52,963 research outputs found

    Alfven solitons in the solar wind

    Get PDF
    A nonlinear Alfven soliton solution of the MHD equations is presented. This solution represents the final state of modulationally unstable Alfven waves. A model of the expected turbulent spectrum due to a collection of such solitons is briefly described

    Development of a Straw Tube Chamber with Pickup-Pad Readout

    Get PDF
    We have developed a straw tube chamber with pickup-pad readout. The mechanism for signal pickup, the size of the pickup signal, and the distribution of signals among neighboring pads are discussed. We have tested a prototype chamber in a beamtest at Brookhaven National laboratory and have measured chamber efficiencies in excess of 99%.Comment: 7 pages, 8 figures, 2 tables. Talk presented at DPF '99 Meeting, UCL

    Reinforcement of polymeric structures with asbestos fibrils

    Get PDF
    Investigation determines structural potential of asbestos fibrils. Methods are developed for dispersing macrofibers of the asbestos into colloidal-sized ultimate fibrils and incorporating these fibrils in matrices without causing reagglomeration

    Comparative efficiency of finite, boundary and hybrid element methods in elastostatics

    Get PDF
    The comparative computational efficiencies of the finite element (FEM), boundary element (BEM), and hybrid boundary element-finite element (HBFEM) analysis techniques are evaluated for representative bounded domain interior and unbounded domain exterior problems in elastostatics. Computational efficiency is carefully defined in this study as the computer time required to attain a specified level of solution accuracy. The study found the FEM superior to the BEM for the interior problem, while the reverse was true for the exterior problem. The hybrid analysis technique was found to be comparable or superior to both the FEM and BEM for both the interior and exterior problems

    A Non-Cooperative Power Control Game in Delay-Constrained Multiple-Access Networks

    Full text link
    A game-theoretic approach for studying power control in multiple-access networks with transmission delay constraints is proposed. A non-cooperative power control game is considered in which each user seeks to choose a transmit power that maximizes its own utility while satisfying the user's delay requirements. The utility function measures the number of reliable bits transmitted per joule of energy and the user's delay constraint is modeled as an upper bound on the delay outage probability. The Nash equilibrium for the proposed game is derived, and its existence and uniqueness are proved. Using a large-system analysis, explicit expressions for the utilities achieved at equilibrium are obtained for the matched filter, decorrelating and minimum mean square error multiuser detectors. The effects of delay constraints on the users' utilities (in bits/Joule) and network capacity (i.e., the maximum number of users that can be supported) are quantified.Comment: To apprear in the proceedings of the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, September 4-9, 200
    corecore